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Bethe Ansatz Equations for the Broken
Z.,~-Symmetric Model
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We obtain the Bethe ansatz equations for the broken Z,-symmetric model by
constructing a functional relation of the transfer matrix of L-operators. This
model is an elliptic off-critical extension of the Fateev-Zamolodchikov model.
We calculate the free energy of this model on the basis of the string hypothesis.
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1. INTRODUCTION

In the two-dimensional solvable lattice models with Ising-like edge interac-
tion, the star-triangle relation

pWia, b|v,w) W(a, c|u, w) W(b, c|u,v)

=Y Wa,d|u,v) W(d,b|u,w) Wd,c|v,w) (L.1)
d

p=p(u, v, w) independent of q, b, and ¢

plays a central role. In (1.1), the summation on 4 is taken over all local
states. These are the relations among the two Boltzmann weights
W(a,b|u,v) and W(a, b|u,v). They live on the edges in two different
directions of the two-dimensional planar lattice. The local state variables a
and b live on the Sites. We denote the spectral parameters by « and v. (See
Fig. 1.)
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Fig. 1. Graphical representation of W(a, b|u, v) and W(a, b | u, v).

Since Fateev and Zamolodchikov!" obtained an N-state generalization
of the critical Ising model as a solution of the star—triangle relation (STR),
there have been two different off-critical extensions of this model. One is
the chiral Potts model'® and the other is the broken Z ,-symmetric model.
Both are Ising-type edge interaction models. The STR for the chiral Potts
model was proved in refs. 3 and 4. Though this model is still under
investigation,®™'® the lack of a difference-variable parametrization in this
model causes difficulties in analysis. Kashiwara and Miwa''") proposed the
broken Z,-symmetric model, and Hasegawa and Yamada'? proved the
STR for this model. Unfortunately the proof in ref. 11 was wrong because
of the incorrectness of the “ICU lemma” in their paper.

In this paper, we study the eigenvalues of the transfer matrix &(u, v, w)
of the broken Z,-symmetric model,

apay - app-|

M-—1
D(u, v, wyoorbu-t = TT Wb, a;| v—w) Wla;, by, |u—w) (1.2)
Jj=0

and calculate the free energy of this model. (See Fig. 3.)

Fig. 2. Graphical representation of the star-triangle relation.
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Fig. 3. Graphical representation of @&{u, v, w).

The local state variables take their values in Z/NZ. Throughout the
paper, we deal with the case of N odd, N =2n+ 1. The Z,-symmetry of the
Boltzmann weights

W(a,bju)=W(N—a, N=b|u), Wa,b|u)=W(N—a, N—b|u)
(1.3)

ensures that the eigenvalue r= +1 of the spin reversal operator # is a
good quantum number, where 2 € End((C%)®*) is defined by

M times

—
A=RPR® --- ®R, RU}N’=U§VNlj (14)

which satisfies #>=1. The vectors v}" (je Z/NZ) constitute an ortho-
normal basis in C”. In the homogeneous case u = v, we show first that any
eigenvalue @(u) of ®{u)= d(u, u, 0) can be written as
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PR E.UY )MW O:(u—u;7/2) 1s)

W) pla—w)) L 0w 112)
1

pu)y=[] 8(u—(2j—Dn|72), n==, i=§—'7 (1.6)
=1

zZl=

See Appendix A for the notation of the theta functions. The zeros
{Uysees tanas} Of @(u) are described as follows:

01(vk+1/2|r/2)>2M ot M0 (v — v+ | 7/2)
U0 TR TN Ty ) 17
<el<vk—x/2|r/2) 0 e == 17
vk=uk—§ for k=1,.,2nM (1.8)
2nM _
y u,sl—4—’mod <Z®%Z> (1.9)
j=1

We call Eq.(1.7) the Bethe ansatz equation. The condition (1.9) follows
from the double periodicity of ¢(u) discussed in Section 4. We obtain the

Fig. 4. Graphical representation of (1.10).
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Bethe ansatz equations above through a functional relation (1.13) for the
transfer matrix of L-operators. These L-operators L(u)e End(C"® C?)
were originally constructed by Sklyanin'!*'¥ as a solution to the relation
(Fig. 4)
L%(u—v) L%u—w) R3,(v—w)

=R (v—w) L%u—w) L®(u—v) on C"®C’®C?> (1.10)
where the upper indices 0, 1, and 2 mean that L%u) acts only on the ith
and jth components of CY® C2® C? and as identity on the other com-

ponents. We denote the R-matrix of the eight-vertex model by Rgy(u).!'* !9
We consider the transfer matrix #(u) of these L-operators,

L(u) =tr(L(u) L'M(u)--- LM~ 'M(y)) (1.11)

M times

———
LMy L'™(y) .. LM~ "My e End(CV® - ®CY®C?)  (1.12)
We derive the functional relation

L(A—u—1/4) D(u)y=Cu)”(f()" D(u—n)+ (—f(A—u))™ D(u+1))

(1.13)
0 2
f(u)=6,(2u ”‘QTZ—YT'/Z) (L14)
_ =0 u—=2(j—1n|t/2)0:(u+ (2] —1)n | 1/2)
Clu) = [020304]( j=] 0 (u+2j77 I I‘/2) 0 (u— 2]_1 | /2)
(1.15)

by the method which Baxter employed to solve the eight-vertex model.'>!”

The correspnding functional relations in the chiral Potts model and in the
RSOS model associated with the eight-vertex model were obtained in refs.
18 and 19, respectively.

We calculate the free energy of the broken Z ,~-symmetric model under
the hypothesis that the solution of the Bethe ansatz equations corre-
sponding to the ground state consists of “strings of length N — 1.” We show
that, in the infinite lattice limit, the centers of these strings are distributed
on the imaginary axis with the density p(w),

p(w) = 2N[ 6,8,1(0 | Npy B2V ZL Nw | NT) al o6
652 ./—1 Nw| Nt) 4 4
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where t=./—1 k, and the free energy per site is

Flu)y= — :i ({sinh (2—:{ u> sinh [%ﬂl (2—1ﬁ—u>] sinh <§V_7:cl n)}

nl e /AN
x{lcosh(;)cosh (ﬂ)] ) (1.17)

The last expression agrees with the result of Jimbo et al.'*® obtained by the
use of the inversion trick, and in the trigonometric limit of x — oo it
recovers the results of Fateev and Zamolodchikov!" and Albertini.!!?’

The organization of this paper is as follows. In Section 2, we review
necessary facts about the R-matrix of the eight-vertex model, Sklyanin’s
L-operator, and the broken Z ,-symmetric model. We derive the functional
relation (1.13) in Section 3. After showing commutation relations among
D(u), L(v), and Z, we obtain the Bethe ansatz equations in Section 4. We
calculate the free energy of the model under the string hypothesis in
Section 5. Finally, in Section 6, we conclude with a brief discussion. We fix
the notation and list the formulas for theta functions in Appendix A.
Miscellaneous properties of the Boltzmann weights are summarized in
Appendix B. We devote Appendix C to the proof of the commutativity
between @ and .

2. REVIEW OF THE BROKEN Z, SYMMETRIC MODEL

J
We fix the notation for matrices. We denote the vector ‘(0,..., ..., 0)
in C” by v™, j=0,1,..,m—1, and the matrix elements of
Ae End(C"®C™® --- ®C™) by

nm—1 nn—1 m—1
Avl_l ® v'_z® - ® v, = Z Z . Z vjl ® Ujl® e ® UJIA{II{II....,.ill,
0

j|=0 /"1=0 Ji=
Sklyanin''* ! constructed the L-operators L(u)eEnd(CY® C?) for the

eight-vertex model satisfying (1.10). The R-matrix of the eight-vertex model
Rgy(u) is a solution of the Yang-Baxter equation (Fig. 5),'> ¢

RY(u—v) Ry (u—w) RE(v—w)

=R (v—w) R (u~w) RO (u—1) on C2®C*®C? (2.1)
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R{"jl(u —-v) =

Fig. 5. Graphical representation of the Yang-Baxter equation.

Its nonzero matrix elements are

R(u) = R} () =[0,0,](1)[0:051(u)[6,0,](u + 1)
Roi(u) = Rig(u) =[0,051(n)[0,0.1(w)[8:051(u +n)
R%(u) = Ro3(u) = [0,0,1(1)[0,051(u)[8,051(u+ 1)
RY(u) = Rog(ut) = [6,0,10n)[ 0,0, 1(u)[8,6,1(u + 1)

The other elements not specified above are all zero. Here we denote
O.(u) O4(u) by [6,6,](u) for short. We usually suppress the elliptic
modulus 7. When n =n/N, N=2n+ 1, the L-operators L(u) in (1.10) have
a “cyclic” representation. In this representation, L{u) factorizes elementwise
as

L2(u) =K o(u) K’3(u) (2.2)

where
Ko, qn)=(—1Y/"+r[9, .0, Ju—oan+}) (2.3)
Ku)=G;'G,'K/%u), G,= <02§3’)7)>1/2 (2.4)

for j=0,1,a,6=0,1,.,N—1, and 6 = +1. (See Fig. 6.)
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a b
K(u—w)= “%}2
1
w
J
Kjg(v —w) = v%
a
w
Fig. 6. Graphical representations of K 5(« —w) and Kb —w).

The factors K,%(u) and K7/%(u) are zero unless |a —b| =1. We can iden-
tify these K(u)’s as the intertwining vectors appearing in the vertex—face
correspondence.?'®) Even in the Fateev—Zamolodchikov model these
K(uY's are different from the three-spin object ¥’s in refs. 2 and 5 by defini-
tion. Their Vs are defined by the Fourier-transformed images of the
product of two Boltzmann weights. These two objects, however, should
have an intimate relationship, because the transfer matrix % in the Fateev—-
Zamolodchikov model is also constructed from #7s.>

Under the Z,-transformation which sends a to N —a, they change as

KN Ts)y = (=D D Ky, Ky Tiu) = (=1~ K ()

(25)
They satisfy the unitarity relations'?”’ Fig. 7)
l .
S G, K2+ A) K72(1) = 8,.[ 0,03641(0) G, 6(2u) (2.6)
Jj=0
N—-1 )
Z G, K (u+12) K% (u)= 0;[0,0:6,1(0) G,0(2u) (2.7)

a=0

N-1
Y. G,K(u) K/%u+2)=0,[0,0,0,1(0) G,0(2u) (2.8)
b=0
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Fig. 7. Graphical representations of unitary relations between the Ks.

In ref. 12 we determined the Boltzmann weights W, and W of the broken
Z ,-symmetric model by the relations (Figs. 8 and 9)

1
Wia,blu,v) Y, K'(u—w)Kjv—w)

0
=Y Ki(v—w)K;j(v—w) W(c,d|u,v) (2.9)
v 70
W(a, b|u,v)Kiu—w)Kv—w)
b=0 N—-1 _
=Y KAv—w)K'%(u—w)W(b,c|u,v) (2.10)
b=0
b d b d
NN
) ¢
v N / U
a c a c
w w

Fig. 8. Graphical representation of (2.9).
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Fig. 9. Graphical representation of (2.10).

From the above relations and (2.5), we have the Z,-symmetry

W(a,b|u,vy=W(N—a, N—b|u,v)
( | | 2.11)

Wa,b|\u,v)=W(IN—a, N—b|u,v)
Equation (2.9) implies that W(a, b | u, v) = W(a, b | u—v) and that

Wla+1,b+1|u) Oi(u+(a+b+1)7y)
Wa, b | u) T O(u~(a+b+ 1))

(2.12)
Wa+1,b—1|u) 0(u+(a—b+1)n)
Wa,b|u)  O,(u—(a—b+1)p)

The crossing symmetry

Wa,b|u)=G,G,W(a,b|A—u) (2.13)

holds in this model. Hasegawa'?"! proved the crossing symmetry only from

(2.9) and the unitarity relations (2.7) and (2.8). We thus have
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W(a+1,b+1 |4) Gai1Goir Os(u—(a+b)n)

W, blu)  G.Gs Ofu+(a+b+2)y 2.14)
Wa+1,b=1|u) Guyp1Go_y Oi(u—(a—b)ny) '
W(a, b | u) G,G, O,(u+(a—b+2)n

without directly solving (2.10). We can see from (2.12) and (2.14) that the
Boltzmann weights satisfy the reflection symmetry

Wia,b|u)y=Wb,a|u), Wab|u)=Wbal|u)
Defining T{*(a | u) and T{ N | u) b

Wlu+ (2 —1)n)

(+ - _ + _
T )(“l")"nek(u—(zj—l) 3 T (| u)=T M ) A—u) (2.15)

respectively, we find the solutions to the recursion relations (2.12) and
(2.14) under the normalization W(0, 0 | u)= W(0, 0| u)=1:

W(2a,2b|u)y=T " a—b|u) T (a+b|u)
W(2a,2b | 4) = GGy TS (a—b | u) TS a+b | u)

Here all local state variables are to be read modulo N. See Appendix B for
details. Hasegawa and Yamada''? established the star-triangle relation
(STR) in the broken Z,-symmetric model,

pWia, b|v—w) Wa, c|u) Wb, c|u—v)

N-1
=Y Wa,d|u—v) W(d,b|lu—w) W(d,clv—w) (2.16)

d=0

where p is a scalar function independent of a, b, and c.

3. FUNCTIONAL RELATION

In this section, we consider the transfer matrix of the L-operators and
construct a functional relation for it. In the course of the calculation, we
utilize the factarization property of L into K’s, (2.2). We define a 2-by-2
matrix L(a, b | u, v, w) by

b 0b b 16

L(a,b|u,v,w) =<K0‘;(u ¥) Ko(;,(v ») K°Z(u ¥) Klb(v W)>

Ku—-w)yK (v—w) K, {u—w)K'(v—w)

la
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boby--bar—1 : ;
[:(’ll,, v, 'l-U)a.Oal-‘-aM_l = . /Qu—z
v__.

Fig. 10. Graphical representations of £ (u, v, w).

Then the transfer matrix £ (u, v, w) of L-operators on the lattice of width
M with the periodic boundary condition is (Fig. 10)

boby -+ bag—
L(u, v, woonou-

=tr(L(ag, bo | u, v,w) L{a,, b, | u,v,w)--- L(ap_, bpr_ 1 | 4, 0, w))

M-1
= Y Y K, ”i(u—w)K"f’;jﬁ(v—w) (3.1)

ij+1dj
eisg—1 j=0
The final goal of this section is to establish the functional relation
L(A—u, A—v,w+1/4) D(u, v, w)

_ e (S, 0, W) D, v, w+7) >
= Clu,o.w) < +(—=fh—v, A—u, —w)™ S(u, v, w—1) (32)
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where we define C(u, v, w) and f(u, v, w) by
Clu, v, w)=[6,636,1O) TS TS I(n | u—w)[ TS TS (n | v—w) (3.3)

[0,0,(v—w+n)
[0:0:](u—w)

flu, v, w)=0,(2u—2w) (3.4)

This functional relation reduces to (1.13)—(1.15) in the homogeneous case,
u=v. We achieve this goal by the method a la Baxter,!*>"'"" which states
the following: Suppose that we can find C-valued functions ¢{”(b | u, v, w)
(v=0,1,2,3 and beZ/NZ) and matrices P;eEnd(C?) for jeZ/MZ
which satisfy

N-1
Py ¢°(b | u, v, w) L(a, b | u, v, w) P;
b=0

B (¢,‘~”(a lu,v,w) ¢ (a|u,v,w)

Z i )
0 ¢}2’(a lu, 0, w)> for aeZ/NZ and je Z/MZ (3.5)

Then we have

Y bo | u, v, w) 10Uk, |, v, W)

-1 bar—1
X @D (bar—y | uy v, w) L(u, v, w)ieli b
M—-1 M—1
2
= [1 a1 u,0,w)+ ] ¢;a; | u, v, w) (3.6)
j=0 j=0

Defining vectors y/'"(u, v, w) e (C¥)®M by

M—1
YOty 0, Whgayoan = L] 6;7(a; | u, 0, w) (3.7)
j=0
we can write (3.6) as
Lu, v, w) ' Ou, v, w) =y u, v, w) + ¥, v, w) (3.8)

In the following, we will find a family of solutions to (3.5)
(b | u, v, w)h=0""c;, b, c;p i [, 0, W) (v=0,1,2,3and be Z/NZ)
P;= P(c))
labeled by {(cq, ¢y,e Car_1) | ¢;€Z/NZ for jeZ/MZ}. This gives rise to

N™ vectors ' labeled as y*(u, v, w)< <t<¥-1. We will also prove that

822/821-2-5
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Y’s are proportional to the row vectors of the diagonal-to-diagonal transfer
matrix @ of the broken Z ,-symmetric model,

YOA—u, A—o,w+ 1/4)90 - w1

=D(u, v, w)ny o, (3.9)
V= L,
=(Clu, v, w) f(u, v, W)™ B(u, v, w+ 1) 5 P (3.10)

W(Z)(,l —Uu, A— v, w+ 1/4)2(:,211274__2
=(—Clu, v, w) f(l —v, A—u, — W))M D(u, v, w— ,7);%?‘:..2,,;’__" (3.11)

The results (3.8)—(3.11) together imply the functional relation (3.2).
Now we start to solve (3.5). We write the matrix elements of P; as

P (pj(_O) pj(_2)>
J pj(l) p}3)
and its first column vector (p!®, pi!’) as p;. Multiplying P; to (3.5) from
the left and taking its first column, we have

N—1

Y ¢80 | u, v, w) L{a, b u,v,w)p;,,

b=0

=¢a|u,v,w)p for aeZ/NZ (3.12)
For later use, we define the functions 4, ,,, 4%,.,, d,, and é* by

dysi(pal u)=p QK “Tu)— pVK, L (u)

I a
A¥ e, plu) =K% u) p'O + K'E u) p'!
Opla|u) =Ko M) K\ 3 N u) — Ko 5 Hu) Ky 5 w)
5*((1 | u)=K0a;l(u)Kla:l(u)_KOu-Zl(u) Klu;l(u)

Equations (3.12) constitute a system of 2N homogeneous linear equations
in ¢{°(a | u, v, w) and ¢'(a | u, v, w) for ae Z/NZ. It has a nontrivial solu-
tion if and only if the determinant of its coefficient matrix vanishes.
Demanding this condition, we obtain

N-1
H dyi—pjralu—w)d¥_a,pj.v—w)
a=0
N-1
+ A (+)pjalu—w)dE, \(a,pjalv—w)=0 (3.13)
=0

u=
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Later we find that Eq. (3.13) restricts p; to a discrete set of values. When
we parametrize p; as

(0)
p,=p(c), p(c)=<p (c)>=( [9203](07)) (3.14)

pM(e) —[6:641(cn)

and denote the dependence on p(c) simply by ¢ and U, =u+ az, we find
that the 4’s and &’s become

8,0,1(0)
dsiealu-1=E2 100 o,
aYaxl
B (@ 11— 1/8)=[0,0.10) (U 1) 0 Uscy)
__[6:6,6.0
salu-1)= -0, o

0*(a|u—1/4)=[6,6,0,1(0) G;6,2U,)

Under the parametrization (3.14), the condition (3.13) holds if and only if
either the c; are all integers or all half-integers. We restrict outselves to the
case that the c; are all integers, because only in this case does the relation
(3.8) give the functional relation (3.2). The system of equations (3.12)
involves not all ¢’s, but only ¢!*(a+1|u,v,w), ¢(a—1]|u v, w), and
¢."a | u, v, w). Expressing ¢!°( a+1 [ u, v, w) and d)“’(a | u, v, w) in terms
of ¢Oa—1]u,v,w), we obtain

¢a+1|uv,w) _dyepalu—w) At (a, ¢y [0—W)

(3.15
¢J‘.°)(a—1[u,v,w) Adyscalu—w)d¥ (a, ¢, |v—w) )
¢i"(a | u, v, w) foya cipr [v—w)
— 3.16
¢‘°’(a——1|uvw) Salu M)A,HH( ¢ alu—w) (3.16)
From (3.15) and (3.16), we can write ¢{"(a | 4, v, w) (v=0, 1) as
¢ alu,v,w)=0""c;, a, ¢;y\ | u, v, W) (3.17)

where the function ¢“c, a, ¢’ | u, v, w) is independent of j. Taking the
determinant of both sides of (3.5), we find

det(Pj+l)

. — M * . _—
(C_/7 a I u IV) 5 (a’ cj+l | v W) det(Pj)

¢ s, a, ¢, | u,0,w) ¢ a | u, v,w)

= 3.18
0 c;,a—1, ¢ w0, w) ' e, a+1, ¢4 | u, v, w) (3.18)
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We set det(P;) to unity without loss of generality. Then Eqgs. (3.15), (3.16),
and (3.18) give

¢(2)(cj’ a, Cj+l | u, v, W)
¢(0)(Cj’ a— 1, Civ | u, v, W)

Ay-ca | u—w)

=—~0*a|v—w) (3.19)

4t fa, cipi[v—w)

where we write ¢{*(a|u, v, w) as ¢'*Nc;, 4, ¢, | 4, v, w). The relations
(3.15), (3.16), and (3.19) recursively determine ¢!"’s. We abbreviate
u—w+an and v—w+yy to 4, and B, respectively. Comparing (3.15)
with (2.12) and (2.14), we have

¢ Ya,b+1,c|u,v,w+1/4)

¢ a,b—=1,c|u,v,w+1/4)
_ Wia,b+1]dg) W(b+1,c| By
W(a,b—1]| Ay) W(b—1,c}| By)

(3.20)

Hence we find that ¢/ is a product of the two Boltzmann weights,
¢ (a, b, c|u,v,w+1/4)=W(a,b| Ay) W(b, c| B,) (3.21)
From (3.15) and (3.16), we obtain

o a, b+ 1,c|u v, w+1/4)
¢ a,b—1,c|u,v,w+1/4)

¢ Vab+1,clu—nv—nw+1/4)

T Na,b—1,clu—n,v—n, w+1/4) (3.22)
The same produce for ¢'* yields
dMa, b+1,c|u,v,w+1/4)
' P(a,b—1,c|u,v,w+1/4)
=¢‘°’(a,b+1,c|u+77,v+17,w+1/4) (3.23)

¢(0)(a, b_ 1, c I u+’7a U+’7, M}+ 1/4)
By (3.21)—(3.23), we can write ¢'") and ¢'® as

¢ a, b, c|lu,v,w+1/8)=f, (u,v,w) W(a,b| A_,) W(b,c|B_,) (3.24)
¢(2)(a, ba c | u, U, W+ 1/4)=gar(u9 v, W) W(aa b l A-l) W(ba c | Bl) (325)
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where f,. and g,. are functions independent of b. Egs. (3.16), (3.21), and
(3.24) determine f,.(u, v, w) as

fac(us v’ w)

G, 0B 0,B
= 00:0,1(0) 0,(2A) g - U Gbzest b oces)
-1 a—b/Y3 —a—b

ab—1]4,) W(b—1,c|B,)
W(a’b | A—l) W(b,clB—l)

[6,641(B\)
[0203](/40)

=Clu, v, w) 0,(24,) =C(u, v, w) flu, v, w)

where C(u, v, w) and f(u, v, w) were given in (3.3) and (3.4), respectively.
The last equality is due to (B.4). In the same way, we obtain

gl v,w)=—Clu, v, w) f(A—v, A—u, —w)
Equations (3.24) and (3.25) become

¢ a, b, c|u, v, w+1/4)

=C(u, v, w) f(u,v,w) W(a,b| A_)) W(b,c|B_,) (3.26)
¢a, b, ¢ | u, v, w+1/4)

=—Clu,v,w) f{A—v,A—u, —w) W(a,b| A,) W(b,c| B,) (3.27)

Substituting (3.21), (3.26), and (3.27) into the definition (3.7) of
W™(u, v, w) and using the crossing symmetry (2.13), we obtain (3.9)-(3.11).
We have the functional relation (3.2) as a result.

4. BETHE ANSATZ EQUATIONS

In this section, we give commutation relations among %, % (u), and
@(v), and reduce the functional relation (3.2) to the functional equation
among their eigenvalues. After discussing some properties about the zeros
and poles of the eigenvalues of &@(u), we derive the Bethe ansatz equations
(1.7)-(1.9) for the broken Z,-symmetric model.

First we have

Lu, v, w') D(u, v, w) = O{u, v, w) L(v, u, w') (4.1)

We give a proof in Appendix C. In the case of the homogeneous systems,
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ie, u=v and w=w', Eq. (4.1) means the commutativity of two transfer
matrices L (u) = L(u, u, w) and &(u) = D(u, u, w),

[L(u), P(v)]=0 (4.2)
The star-triangle relation (2.16) gives

[D(u), P(v)]=0 (4.3)
and the LLR = RLL relation (1.10) guarantees

[Z(u), £(v)]=0 (4.4)

The relations (4.2)-(4.4) make it possible to diagonalize #{u) and P(v)
simultaneously by eigenvectors independent of the spectral parameters u
and v. Fixing one of the eigenvectors and denoting the corresponding
eigenvalues of #(u) and ®(v) by /(u) and ¢(v), respectively, we can rewrite
the functional relation (3.2) as

12— u—1/4) g(u)
=Cw)(f plu—m) + (=DM fA—-u)™ @(u+n)) (45)
where from (3.4) and (3.3), f(«) and C(u) are

[6,60,](u+n)
[6:0,](u) (4.6)

Clu) =[0,0,0,1(O[ T T T T (n | )

Su)=6,(2u)

The next step to derive to derive the Bethe ansatz equations is to examine
the quasiperiodicity property of ¢(u). We have the relations

DS(u+1)=>(u) (4.7)

@¢(u)=¢(u)@=¢<u+%> (4.8)

We have defined £ in (1.4). The periodicity (4.7) is obvious from the
definition (1.2) of @ and the periodicity (B.5) of W and W. The other
periodicity (4.8) follows from (B.6). We also have the commutativity

(&, L(u)]=0 (4.9)

from the Z,-symmetry of Ks, (2.5), and the definitions (1.4) and (3.2).
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Diagonalizing # and @(u) simultaneously with #(v), Egs. (4.7), (4.8), and
(1.4) give

o(u+1) = o(u), ¢<u+%>=r(p(u), F=+1 (4.10)

where r is an eigenvalue of #. The poles of ¢(u) are coming from only
those of the matrix elements of @(u). We define

_ ”(T) n n _ '_
p(u)—(”(w) T 10053 =1 9

=1 6x(u—(2/ =Dy | 7/2) (4.11)
j=1

which contains all possible poles of W(a, b |u). The same is true for
p(A—u) for W by the crossing symmetry. Hence the set of zeros of
(p(u) p(A—u))™ contains all poles of ¢(u). By the Lemma in Appendix A
and the double periodicity (4.10) of ¢(u), we can write ¢(u) as

[T 0y(u—u;] 7/2)

P = (0m) =y ptz— )

2nM

y quan+—l—4——rmod <Z®%Z)
j=1

The initial condition @(0)=1d, (B.3) determines the normalization of
const,

otu) (L2 )MZ"”’H.(u—u,-l 72) @12)

p(u) p(A—u) 0,(u;] 7/2)

Assuming C(u;) #0 in (4.6) and substituting u, (k= 1...., 2nM) into (4.5),
we have

j=1

S o(ue—m)+ (=DM fA~u )™ p(up+17)=0
for k=1,.,2nM (4.13)

We further assume that u, {(k=1,.., 2nM) are neither zeros nor poles of
f(u), f(A—u), and @(u=n). Then (4.13) becomes

( Slu) p(uk+77)p(/1—uk—r7)>’”

S(A—uw) plup—n) p(A—u,+n)

M4l ZHMHI(uk_“j""” | 7/2)
jor O —u;—n | 7/2)

=(-1

for k=1,.2nM (4.14)
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We can write f(u) in (4.6) by (A.2) as

_n(2x)
n(t)?

Then the left-hand side of (4.14) reduces to

( 0,(uy | ©/2) >2M
0\(up—A | 7/2)

Su) 0,(u|7/2) 0\(u+n|1/2)

After shifting u, by 1/2, ie., putting
A
vk=uk—§ for k=1,.,2nM

we obtain the Bethe ansatz equations (BAE) for the broken Z ,~symmetric
model,

<9n(vk+i/2 | 1/2)>2M=(_1)M+, 20, (ve—v,+117/2)
0\(ve—4217/2) j=101(vk_vj—’7|f/2)
for k=1,..,2nM (4.15)
2nM _
y v,EIT’-mod (zgg%z) (4.16)

Jj=1

5. DENSITY FUNCTION AND FREE ENERGY

In this section, we will calculate the free energy of the broken Z ,-sym-
metric model from the Bethe ansatz equations under three assumptions
concerning the ground state. One is the String Hypothesis below, and the
others are about the distribution of string centers v,=./—1 w, and the
corresponding quantum numbers I,. We restrict the spectral parameter u
to the region [0, 1/2N], in which all the Boltzmann weights are real and
positive, and 7 to a pure imaginary number, t=./—1 x, with k real and
positive.

By a string of length / and parity v (=0 or 1) with its center v,, we
mean the following set:

va_jzva+(2j—l—l)g+% mod(Z@%Z) 51)

Uu‘j
for j=1,2,.,/, and v, pureimaginary

We suppose that the following hypothesis holds in the infinite lattice
limit,(1%-%-28)
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String Hypothesis for the ground state. The solution of the BAE
(4.15), {v;, j=1,..,2nM}, corresponding to the ground state consists of
strings of length N—1 and parity [1 —(=1)"*']/2.

More precisely, for finite systems the solutions of the BAE may have
deviations from strings. The hypothesis asserts that these deviations vanish
in the infinite lattice limit. In the course of the following calculation we deal
with the solutions of the BAEs as if they were genuine strings, since we are
interested in thermodynamic quantities. Because all the matrix elements of
& are real and positive, the Perron-Frobenius theorem‘®®’ shows that
the ground state belongs to the sector of zero quasimomentum.!'” The
hypothesis implies that the ground state also belongs to the sector r=1,
and that the corresponding solutions are made up of M strings of length
2n. We denote them by

1_(_1)n+l

by ,= —1wa+(N—2j)g+ .

mod(Z(—B%Z)
for a=1,.,M and j=1,.,2n

where w, are all real and taken as

K
SW W, - st<Z

&IK

Then the BAE for the ground state becomes
<6’ v,,k+/l/2lr/2)>”” _pype H H@(vﬁk Ve, + 11 7/2)
0 Uﬁ.k_i/z | 7/2) aml j= 1 0 (vﬂ.k_va.j_’7 | 7/2)
for f=1,.,. M, k=1,.,2n (5.2)

Multiplying (5.2) over k= 1,..,, 2n, we have

2n ’ 1 1_(_1)n+l 2M
{]j X(‘vﬂ’i\/<n_2k+ﬁ>+T>}

M n-1 2 2"2 —1
X (v —wa,O)[ <w —1]>J X(w —-wa,—)}> =1
(I w0 Tt (o] 2 (o=

) (5.3)

where y(w, a) is

ww,ay =2 8 la—/—1w]|1/2)
8(a+./—1w]1/2)
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Taking the logarithm of (5.3) and dividing it by 2 ./ —1 2M, we have
Iy
T (wg) === for f=1,..M (5.4)
M
where the quantum numbers I, are integers and

1 M
T (w)=T(w) 0 2 Tow—w,)

a=1

- _ 2n i _ _l_> l_(_l)u+1)
T (w) ,Z’lt<w’2N<n 2k+2n +————4

T(w)=tw,0)+2 i t <w, %_}) —1t <w, 27’:[—_>

j=1
1

—~1=

tw, a)= log y(w, a)

Albertini et al® numerically investigated the three-state Fateev—
Zamolodchikov model. Their results indicate that the String Hypothesis
holds. We assume that the centers w of the strings are distributed densely
on the interval [ —«/4, x/4] in the limit of M large, and that the quantum
numbers [, satisfy

I/}+1=I/3+1 for ﬂ=l, 2,..., 2nM (55)

These are the second and the third assumptions we make. The results by
Albertini et al. also support them. We furthermore conjecture that

M)a= _“)M—ot+] (56)

holds exactly for the ground state even in the finite lattice. This conjecture
1s conssistent with their results. If (5.6) is true, we can show that

T(k/4) — T (—x/4) =1 (5.7)

and this implies that 2M integers I, must fill the interval [ —M, M)
without jumps if all / are different. This also supports our assumption. But
we do not use the conjecture (5.6) in this paper.

We now proceed to the calculation. We define the density function for
w’s by

. 1
p(wg) —A}T?x m (5.8)
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which is positive and for any integrable function f(x),

K/4
_/4f(W) plw) dw (5.9)

. 1 X
Jim 57 X fw) =[]
holds. Considering the difference of (5.4) for I, , and I

1 _ Ig 1 — 1y =~7(W/z+1)_'9_(w/f)
M(wg,y—wg) M(wg,,—wp) Wgy1—Wg

and letting M — o0, we obtain

plw)

_dZ(w)_dziw) 1 I 7AW ZW) ydw (5.10)

dw dw 20 _xnm dw

By (A.1) and (A4), we can expand #(w, a) as

1 log 6,((2/—1/){a} +(2/x)w | —2/7)
=1 8,2/ —1/x)a) — (2w | —2/7)
4n = sin((4nk/x)w) sinh((4nk/x)({a} — 1/2))
< Gl =D+ 2 k sinh(27k k)

Hw, a)=87n {a}w+

We denote the fractional part of x by {x} =x—[x], [x] being the Gauss
symbol. When we write the Fourier expansions of d7,(w)/dw, d7,(w)/dw,
and p(w) as

d7;(w) i 4./—1nk .
#:k}iwAjkexp(—K—w) for j=1,2
had 4. /—1nk
o= £ v (ST
k=—oo K

the integral equation (5.10) gives

D= Ak
KTl (1/8) Ay

The coefficients 4, are

4n

Nk

4 sinh((nk/Ni)(N — 1)) cosh((nk/Nk)(N + 1))
Kk sinh(2rk/k) cosh(2nk/ic)

Al,k=
k#0




74 Yamada

2n k=0
1454, =N
4 7% 7 2 sinh((nk/Nic)(N — 1)) cosh((mk/Nk)}(N + 1)) K £0

sinh(2nk/x)
We obtain the density function for strings,

p(M)):z i exp((4\/‘_17[k/K)\v)

cosh(nk/Nx)

k= -

Using (A.1) and (A.5), we can rewrite it as

2 _l_ 0 2cw/K | —1/N7)
piw) = 10:6] (0‘ N Nr) Ba(2wjrc | —1/N7)

_ IN[0,0,1(0 | Nr) B 1 Nw | VD) (5.11)

T
0,(2./—1Nw]| Nt)

The free energy per site F(u) of the model is defined by

F(u)=Mli_r.noo<-— AillOg (p(u)> (5.12)

where ¢(u) is the eigenvalue of the transfer matrix @(u) corresponding to
the ground state. We can write ¢(u) as

_(POp) \M 2
fﬂ(u)—<p(u)p(,1_u)> jU H Dj(u, w,)
D (u, w)=0'(V —lw+p—ul72)
0(/—=1w+pg,11/2)

_ 1 1_(_1)n+l
B=tn} v= g\,<N Y+s- )+f

by (4.12), (5.6), and the String Hypothesis. Then the free energy per site is

(PO p(d) >
Fluy=—log (p(u)p(l—u)

2n M

-3 lim L Z log D;(u, w,)

M—;
J @O
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o (_pl0) p(h) )
= —log <p(u)p( A—u)
1 .I'l

K/4
52X f_ ., Tog Dy(u ) p(w) diw

Since p(w) i1s an even functlon, it is enough to integrate the even part of
log D;(u, w). We hence have

0) p(4

__l -Z: logD(z)< %)

j—l
1 z jm dlogD‘”’(u W)

—x/4

——=L 2 o) dw

where D{“)(u, w) and p“”(w) are
P = V(w) =j p() dv
—x/4
D (u, w)=(D,;(u, w) D;(u, —w))"?
A little cumbersome calculation yields

1o < 2(0) p(4)

p) pu—u)> = Eilu) + Eolu)

1 & K
—3 Y, log DY <“, Z>= ~E\(u)+ E5(u)

Jj=1

1 2n K/4 dl D(“)
L3 L8 ) = — £+ B

_/ 1

where

oo (o (3]
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= =4 £ (- (fomn (57 nn | 5 (55
E3(u)_—4I§1( 1) ({smh(x u | sinh sy
2nl 27l
xcosh[m(n+ l)] sinh Vic 1)}
. 2n 2rl

x[151nh<K7>51h(NK>] >
Efu)=4 i ({sinh (2—nl u) sinh [2

I=1 K

x cosh [?V_T:cl (n+ 1)] sinh

. 2nl 2rl
x[[smh( - )sx h(m

Now F(u) has the final expression

al\]~!
cosh (mﬂ )
F(u)=E,(u) + E4(u)
z . 2nl 2nl . 2
= _I; <{smh (7 u) sinh [ - (ﬁ—uﬂ sinh (ﬂ n)}
nl nl
x[lcosh<x>coh <NK>] > (5.13)

It agrees with the result of Jimbo e al.*” obtained by the use of the inver-
sion trick. In the trigonometric limit x — + oo, the free energy formula
(5.13) reduces to the integral

lim F(u) = Jw dx sinh(Nrxu) sinh[ Nzx(1/2N — u)] sinh(nnx)
m N x cosh(Nnx/2) cosh?(nx/2)

K— o

which also agrees with the results of Fateev and Zamolodchikov'!' and
Albertini.!'® The former was obtained by the inversion trick, and the latter
by the Bethe ansatz method.

6. DISCUSSION

The first main goal of this paper is the functional relation (3.2). We
obtain it was a functional relation for % (u). The diagonal-to-diagonal
transfer matrix @(u) of the broken Z ,~-symmetric model appears naturally
in this relation. We obtain the Boltzmann weights W and W of the broken
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Z ,~symmetric model in an algebraic way different from that of ref. 12. We
obtain W and W as the solutions to the relation (3.12). In ref. 12 they are
the solutions to the relations (2.9) and (2.10).

The Bethe ansatz equations (4.15) are the second goal of this paper.
The commutativity (4.1) between #(u) and ®(v) is essential to get the
Bethe ansatz equations (4.15) from the functional relation (3.2). It is
notable that the unitarity relations (2.6) and (2.7) guarantee this com-
mutativity. This contrasts with the usual situation where the commutativity
of the transfer matrices is derived from the STR or the LLR=RLL type
relations.

The Fateev-Zamolodchikov model is the trigonometric limit of the
broken Z,-symmetric model. It has the Z,~-symmetry besides the
Z,-symmetry. Hence the Z\-charge ge { —n, —n+1,..,n—1,n} is a good
quantum number, where exp(2./—17n(g/N) is an eigenvalue of the
Z ~charge operator 2 e End((C")®"),

M times
/\A‘_\
2=000® - ®0

Qv}"”:exp <2 —ln]JT/> U}N’ for j=0,1,.,N—1 (6.1)
Albertini''”’ obtained the Bethe ansatz equations and the formula for the
eigenvalue ¢@gz(u) of the diagonal-to-diagonal transfer matrix for the
Fateev—Zamolodchikov model. They are

SN )
kT =(—-1¥"* _—
<s(uk —2/2) (=1 jU, S(vp—v;—n)

for k=1,.,2nM (6.2)

P(0) po(A) >“ M s(u — )

¢FZ(LI)=<pw(Ll)pm(/1—u) j=1 S(uf)

plu)=lim p(u)  (63)
where s(u) =sin(zu) and p(u) is given in (4.11). The notations are slightly
changed from ref. 10 to allow comparison to our case. The main difference
is the number of factors on the right-hand sides of the BAE and in the
expressions of the eigenvalues ¢(u) and @z(u). It is always 2nM in the
broken Z ,-symmetric model, and in the Fateev—Zamolodchikov model it
is 2nM — 2 |q|, which depends on the sector of the Z ,-charge operator 2.
This difference originates in the fact that the Z,~symmetry holds only in
the Fateev—Zamolodchikov model and that it breaks away from the criti-
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cality. The BAE (4.15) for the broekn Z ,~symmetric model should coincide
with those for the Fateev—Zamolodchikov model in the trigonometric limit
Kk — 0. We conjecture that the situation is the foilowing. In the solution
{0} s Vanar} to the BAE (4.15) for the broken Z,-symmetric model, some
of them diverge to +./—1 oo all in the same order in x« when the tri-
gonometric limit is taken. Half of them diverge to ./ —1 o0, and the other
half to —,/ —1 co. There is always an even number of them, between 0 and
2n. Let 2¢q be this number. Then ¢ determines the sector of the Z ,~charge
operator in which this eigenvalue falls. In this situation, the BAE (4.15)
and the eigenvalue ¢(u) in (4.12) surely become the BAE (6.2) and @¢z(u)
in (6.3), respectively, in the trigonometric limit.

The free energy (5.13) agrees with the result of ref. 20 by the inversion
trick. The String Hypothesis for the ground state in Section 5 is consistent
with their result. In our formulation, it is manifest that the free energy F(u)
is doubly periodic in u,

Flu+1)=Flu+1/2)=F(u)

from (4.10), (5.12), and the fact that the ground state belongs to the sector
of r=1. This result of for F(u) also gives the ground-state energy of the
one-dimensional spin chain Hamiltonian J# corresponding to the broken
Z ~symmetric model,

log ®(u) = Id + ust + O(u?)

The Hamiltonian # itself i1s modular invanant, J#(7) =2(—1/7). We will
report on these matters elsewhere.

APPENDIX A. THETA FUNCTION

We summarize the necessary facts about theta functions in this
appendix. See refs. 30 and 31 for proofs. We define 6,(« | t) by

0,(u | T =2¢"* sin(mu) [] (1 — 24 cos(2mu) +¢* )1 — ¢*")

n=1

where g=exp(y/—1=zt). It is an odd function in u and has the
quasiperiodicity

O(u+1]1)=6,(u]|1)
O fu+tit)=—qg texp(2/—17u)0,(u| 1)
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and satisfies

2

tnm (L) o T

The other theta functions 8., 04, and 8, are defined by

- l) (A.1)
T

Ox(u|t)y=0,(u+1/2|1)
O (u|t)=—q"exp(/—1 nu) O (u+1/2+1/2]1)
Ofult)y=—/—1q"exp(/—17u) 0, (u+17/2|7)

We abbreviate a product of theta functions of the same argument to, for
example,

[0,60,](u|7)=06,(u|7)0,(u]T)
[60:0:6,1(0 | 7)=65(0]17) 050 7) 8,0] 1)

In this notation,

10,0101 =" 0, 02, (0265101 ©) = Lo ,(u | 7p2)
n(z) ()
_n(21)? _n(27)°
[6,0:)(u] )= n(47) 0,(2u | 21), [0:0,J(ult)= n(47) 0,(2u | 21)
(A.2)
hold, where
n(t)y=q¢"* ] 1—q")
n=1
is the Dedekind eta function. The necessary addition formulas are
[6205](u | ©)[6205](v | 1) £ [6,0.](v | 7)[6,0,](u | 1)
=[60,0,1(0] 1) Ox(uFv|7)Os3(utv]| 1) (A3)

[61641(u | 1)[6:605)(v | ) £ [0:05](u | T)[6,6,1(v | 7)
=[6:0;](0|7) 0y(utv|7)byluFv|7)

822/82/1-2-6
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In Section 5, we use the Fourier expansions

1 \(w+v|1)

/1 Ogt9l(w——v | 7)

_ & sin(2znkv) sin(2rnk(w — 1/2))
= —2n{v} +2k§l K sin(ake) (A4)

O5(u|7) 1 Z  exp(/ —1 nku)
G| ©) (0201001 ), 2. cos(eke) (A5)

which are valid for 0 < Im(w) <t and v real. We are denoting the fractional
part of x by {x}. The expansion (A.5) is essentially the same as that of the
Jacobi elliptic function dn(n, k)

dn(u,k)=§< 5 exply —1nlu/K) K=§H3(0|t)2

cos(nlt) ’

= —o
The next lemma is fundamental.

Lemma 1. Let f(«) be a meromorphic function which is not identi-
cally zero and has the quasiperiodicity property

flu+ 1) =exp(—2./—1xnB) f(u)
flutt)=exp(—2 ./ —17n(4,+ A,u)) f(u)

Denoting the zeros and poles of f(u) by u,, us,..,u, and v, v3,.., 0
respectively, then we have

n»

n—m=A,, You— Y v,;=34,— A4, + Bt mod(Z®1Z)
i=

j=1
and

I_L'.'=, O(u—u;| 1)

}”:1 01(“‘”j| 7)

fluy=Cexp(/ —1 (4, —2B)u)

with C independent of u.

APPENDIX B. BOLTZMANN WEIGHTS

In this apendix, we list some formulas for the Boltzmann weights.
Solving the recursion relations (2.12) and (2.14) under the normalization of
W(0,0 | u)=W(0,0|u)=1, we have, for a, b=0, 1,..., n,
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W(2a, 2b | u) = W(N —2a, N—2b | u)
=T5 (la=bl |u) TS (a+b | u)
W(2a, N—2b|u)= W(N—2a,2b|u)
=T a+b|w) T (la—b| | u)
W(2a,2b | u)= W(N—2a, N—2b|u)
=G G TS (la—b| |u) T Na+b|u)
W(2a, N—2b | u) = W(N —2a, 2b | u)
=G2Gy Ty Na+b|u) T (la—bl | u)
Noting that T¢”(a | #) in (2.15) satisfies
TO0 | wy=T7(N |
TON—alu)y=T{(alu)

81

(B.1)
(B.2)

we can extend the domain of the first argument of T!7 to all integers by
periodicity. With this convention we can rewrite the above expressions for

the Boltzmann weights simply as
Wa,2b|uy=T " a—b|u) T (a+b|u)
W(2a,2b | u)=GyGyp Ty Na—b|u) TS a+b|u)
We have in particular at ¥ =0 and 4,
Wa,b|0)=G'G, ' W(a,b|2)=1
G,GyW(a,b|A)=W(a,b|0)=0,

When we write u +ay as U,, the next identity for T

T n—alu) _< 0 (U1 4 0n2)

162
= T ntu
et o) )T

Hk( U_2,72+(l +m)/2)
gives

Wia,b—1|u)
W(a,b|lu+on)

W(a,b—1{u) Gy

(0x(Usi—as ) O3(Ugta s 0)) LTS TS (0 | 1)

(B.3)

= (01(Ua(—a+b)+l) 04 Ua(a+b)+l))a[T(zb)T(;)](” | u)

W(a, b|u+on) G,

(B4)
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T has the quasiperiodicity

T a|u+1)=exp(d4./—1roa’n) T(a|u+1)=T a|u)
T a|u+1/2)=exp(—2./—1noa’y) T (a|u), k+k'=0mod 5

Hence we have

W(a,b|u+1)=Wa,b|u), Wa,b|lu+1)=Wa,b|u) (BS5)

and
W(a,b|u+t/2)=exp(—4./—1n(a®>+b*)n) W(a, N—b | u)
W(a, b | u+1/2)=exp(4 \/—_ln(a2+b2)77) W(a, N—b | u)
We note

W(a,b|u) Wb, c|u)

=exp(—4 ./ —1n(a*—=c*)n) Wa, N—b | u+1/2) W(N—b,c|u+1/2)
(B.6)

APPENDIX C. COMMUTATION RELATION BETWEEN
% AND @

In this appendix, we give a proof of (4.1). A graphical representation
of this proof for the case of M =2 is illustrated in Fig. 11. We have

(D(u, v, w) L(u, v, w2 h-t

TredM—t

= X Bluo,w)g R Llu v, we ok

sebaoa g ap -1
by by -t

M—1
= 3 <]—[ W(b;_y.c;lu—w) Wic;, bj| v—w)

by---bp—1 N j=0

foeerip—1

14

xK. Y(u—w') K‘?zﬁ(v— w')>

By the unitarity relation (2.7), inserting
1=T 6, = Yiw Gu K S w—w + ) K2 (w—w')
CETYT [60,056,1(0) G, 05(2w —2w)
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!

w
B -}
1 c ) C
v A __ PO PO
aoCé— aocé
u \ . u
31 Cy (41 41
alce = al(é =
U \ ) u
20 Cp w 20 Cp
t CO
v ow a
w+ A 7
( - )

[020394](0)G80 92(2111 - 2’UJ’)

Co

a le+)\

Gy
X ([920394](0)G¢002(2w - 21)1(11@[)0 ) ](O)G (%) (2 2 ))
20304 at2(2w — 20!

Fig. 11. Graphical representation of a proof of £ (u, v, w') &(u, v, w)=@(u, v, w) L(u, v, w').

we have
=([6,6:6,1(0) G, 8,(2w—2w')) "

X Y o« Y G K. Q2(w—w+1)
bo---bay_y i'da’
per-iM—

M—-1
x( Y. Wlc;,b;lv—w) W(b;_,, ¢l u—w)>
j=0
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i ' by— [
x K% (w—w )K,‘,”Z_:(u-w)

M1
x< [T K9 %(w—w) Kﬁ;ﬁ::(u—-w’)) K"%(v—w"
j=1

Successive use of (2.9) and (2.10) yields
=([0,60,6,1(0) G,0,(2w—2w')) !

x Y Y G.K.2w—w+A) K Dw—w)
bo---by—y i'd
dg-ccim~1

M2
x( Z K,.I_gl',(v—w') K'i;ﬂ_:&(u—w’))
j=0

XK,  th-to—w) K" 2u—w)

M~2
x< 1 Wb, a,lv—w) Wla;, b, | u—w)>
j=0
XW(bp_ 1y gy | 0=w) Wap_,,a |u—~w)
By the unitarity relation (2.6), we have

i G K w—w + ) K72 (w—w")

[0.0,0.100) Goufol2w—2w) Ceow-)

then the above formula reduces

M-

= 3 (ZKijg'/ﬂ(u—vv’)K’fg:"(u—w’)
bo---ba-1

o ip—y

j=0
x Wb, a;|v—w) W(a;, b, | u—w))

— Py M- bo- - bar—1
= Y Lo, WP D(u, v, w)e b

bo-- bar-1
=(L(u, v, w') Dlu, v, W) M-

saM -1

Now we obtain

D(u, v, w) L(u, v, w)=L(u, v, w) ®u, v, w)
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